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ABSTPACT

Adaptive multichannel prediction filtering has been completed
on four data samples, and adaptive maximum-likelihood signal extraction

has been done on one sample.

Comparison of adaptive results with thcse obtained from
processing the same data with stationary f{ilters (nonchanging filters designed
from correlation-function estimates) shows that the adaptive filters approach
the stationary filters as kS (the rate-of-convergence parameter in the adaptive
algorithm) approaches 0. For larger values of ks' adaptive prediction-error
filtering does better than stationary filters on nontime-stationary data, but

stationary filters are better on data samples which appear to be time-uniform.

The performance of an adaptively designed maximum-likelihood
filter was shown to be essentially equivalent to that of a maximum-likelihood

filter which was conventionally designed from correlation-function estimates.
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SECTION 1
INTRODUCTION AND SUMMARY

This report presents initial results in a study of the adaptive
filtering of seismic array data. There is a brief discussion of the theo-
rectical basis of the adaptive algorithm and its application to multichannel
prediction and maximum-likelihood filtering. Adaptive multichannel pre-
diction filtering has been completed on four data samples, and maximum-
likelihood signal extraction has been done on one sample. Adaptive filter
results are compared with those obtained from stationary filters, i.e.,

from nonchanging filters designed from correlation function estimates.

Plots of both mean-square-error vs ks (the rate-of-convergence
parameter in the adaptive algorithm) and of mean-square-error vs time
indicate that, in the limit as kS approaches 0, the adaptive filters approach
the stationary Wiener filters. For larger values of ks, the mean-square-
error of the adaptive prediction is found to be greater than the Wiener mean-
square-error for some data samples and less for other samples. The data
characteristic which defines the exact behavior of the mean-square~-error-

vs-ks curve appe.rs to be related to the time-stationarity of the data.

The performance of an adaptively designed maximum-likeli-
hood filter was shown to be essentially equivalent to that of a maximum-
likelihood filte= which was conventionally designed from correlation-fanction

estimates.

1-1/2 sclence services divisicn
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SECTION II
THEORY OF ADAPTIVE FILTERING

To derive the Widrow adaptive-filter algorithm without
becoming too involved with notation, the simple problem of single-channel
prediction will be used to illustrate the main features of the algorithm.
l.ater, the algorithm will be expanded to the multichannel case; and its

application to maximum-likelihood signal extraction will be discussed.
A. SINGLE-CHANNEL PREDICTION

Consider a single channel of sampled data points, X5 and let
the problem be to take p consecutive values of X, and use them to predict
the value of the next point. To do this, these values of x, are considered

to be components of a p-dimensional column vector,

X = ( x X X )T (2-1)
=n = xn-p+1' n-p+2’ “n-p+3’ et

To predict the value of the next point, X 41’ the scalar

product is formed from the data vector -}Sn with the prediction-filter vector,

T
E = (fl, fZ, f3, e s 00 fp) (2"2)

The error in the prediction of x is
n+l

=, % - _F_ X (2'3)




G

and the squared error is

2 T T T 2
& - E Enzn E B Z—F-‘ En xn+1 * xn+l (2-4)

The expected value of € is given by

n+l

—— ——— ———
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\2-5)
n

Fquation (2-5) shows the expected value of er?;+l to be representable as a

: -dimensional quadratic surface in F. The value of F at which the minimum
of the expected €r21+l surface occurs is the optimum filter in the least-squares
sense. Adaptive processing starts with some arbitrary filter vector F and
iteratively converges toward the optimum F. In this report, the (n+l)th
iteration of F, Fn+1 is found from Fn by the method of steepest descent, which

can be summarized in the following two rules:

1) Move opposite the direction of

the gradient of the €St surface

2) The distance moved in this direction
is proportional to the magnitude of the
gradient, and the constant of propor-
tiornality is called k‘5

Cast into equation form, these two rules yield the steepest-

descent algorithm

£n+l = En ) ks v nt1 (2-6)

il

D e N S

g

"1



ﬁ)
. 2 2
Ir practice, the gradient of the expected value of en+1 is not
known. However, the Widrow adaptive-filter algorithm meets this problem

by making the approximation
n+l n+l

v € 4] I8 ottained by differentiating Equation (2-4) with respect

to FT, giving

i €n+1 = 2--)Snz{-n -En ) 25n *n4l T -Z:n+l—)£n @=lfd

Combining Equations (2-7) and (2-6) gives the Widrow single
channel adaptive algorithm of
(2-8)

F = F + 2k €
-n S

—n+l n+) —)En

B. MULTICHANNEL PREDICTION FILTERING

The multichannel case is shown diagrammatically in Figure
II-1., Here, C channels of time-series data are filtered by C digital filters
to produce an output which is supposed to approximate Y the desired out-
put. In this diagram, the subscript n used on the filter-column vectors,
the input time-series data vectors, the desired output, and the prediction
error indicates their values at the nth time. The subscript is necegsary on

the filter vector sinc.e the filter weights change with time inthe adaptive algorithm.

The derivation of the multichannel algorithm follows easily

from the single-channel algorithm if a new column vector 2§n is made by
placing the column vectors Xn (i), i=1 to C, on top of each other and like-

wise forming a new column vector -E:n from the E—n (i), i=1to C.
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é‘
In terms of the new vectors, the prediction is given by a

scalar product of z;‘ and E;} Thus the prediction error can be written as
(2-9)

Using the same general procedure as used in deriving the
single-channel algorithm, the multichannel adaptive-filter algorithm is then

found to be

F’ = F ¢+ 2k_ ¢ X’ (2-10)

—n+l =5 n —n

C. MAXIMUM-LIKELIHOOD SIGNAL EXTRACTION

The transformation of maximum-likelihood processing into
problems of prediction is first considered. This transformation is desirable
so that the adaptive-prediction method previously fescribed can be used to

design maximum-likelihood filters.

Suppose we have an N-channel problem and an L-point filter

fij’ where i=1, ..., Nand j=1, ..., L. We wish to minimize the output of

the filter

Yieg = Z fij X t-j (B=11}
1}

where X is the output of seismometer i at time t. The criterion that Wi
J 2
be an unbiased estimate at time t-s of the signal, which is assumed constant
acros. channels, leads to the constraints

2i‘fij = 633 (2-12)

L PR I ERC 7 N-5 7 sclence services division



where

O
n

) 0forj# s
js

and

6.
js

lforj=s

The constraints may be expressed as
N

15 = %s - 2 L
i=2

and substituted into Equation (2-11), This gives

N N
Vig = 20 (6,'3 -2 fij) Xp,e-5 1 2 2 55 X4, t-j
j i=2 i=2 j

which can be simplified to the form

N
- 3 ( ) ) R4
Yios = *1,t-s Z £ VB ey ™ B (4518}
i=2 j

Referring to Equation (2-3), Equation (2-13) can be recognized
as a pruediction-error equation. Thus, the maximum-likelihood output Vied

can be considered the error in predicting x by filters operating on the

1,t-8

3 _j), where the filters are no longer subject to

set of data (xl,t-j "% .

constraints.

Equations could now be written to specify the filters fij in

torms of the covariances of the data x These equations would be equiva-

i, t
lent to the conventional system of equations but of order (N-1) L instead of
NL. However, the purpose of this section is to determine adaptively the

maximum-likelihood filters.

i,
y
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Referring to the algorithm of Equation (2-8) which resulted
from Equation (2-3), an adaptive algorithm follows immediately from
Equation (2-13). The resulting maximum-likelihood adaptive algorithm
is

fij (t+1) = fij (t) + 2ks 7 (xl,t-j - % t-j) (2-14)

The adaptive maximum-likelihood results in this report are
derived by using Equation (2-14). Obviously, there are other ways of com-
bining Equation (2-11) and the constraints of Equation (2-12) into a single
prediction-error equation. For example, one could solve for f3j and substi-
tute into Equation (2-11), thereby predicting channel 3 from traces made by
subtracting the remaining channels from channel 3. All of these different
ways of producing a prediction-error equation are equivalent in the sense that
the resulting equations specifying the filters in texms of the covariances of
the data x, ¢ define equivalent filters. The adaptive algorithms resulting

1,
from the different prediction-error equations will be different, however.

All of these algorithms are determined by reducing the dimen-
sion cf the problem by substituting in the constraint equation and then by
finding the gradient for the reduced set of filter coefficients. The constraints
are satisfied by actually using the projection of the subset gradient on the
constraint plane. A better method is obtained by finding the gradient at a
point in time for the complete set of coeificients and projecting this gradient
on the constraint plane. This ''full" gradient algorithm can be derived from

Equations (2-11) and (2-12) by adding and subtracting

pIEE

i

e R -7 science services division



where

LN
- TN 2 i, t-j
i=1
Thus,
Vs = %eos " 2 b5 P ™ %, 0 (2-15)
i

which is in the form of a prediction-error equation so that the corresponding

adaptive algorithm is

fij (t+1) = fij (t) + 21<s yt-s(xt-j - xi,t-j) (2-16)

Note that the constraints are alvays satisfied if the iteration is started with

filters satisfying the constraints.

The final report will give a more complete description of

maximum-likelihood processing by the adaptive method of Equation (2-16).




SECTION III
EXPERIMENTAL RESULTS

A. PREDICTION FILTERING

Adaptive multichannel prediction filtering has teen completed
on four data samples., Information about these data — which consist of UBO
road noise, UBO normal noise, the center and first ring of LASA subarray
Bl, and 13 channels of array data — is given in Table III-1. These data

samples also have been processed using Wiener prediction filters.

In the filtering program, the data in each trace are scaled
by 1/(rms value of that trace) so that the variance of all data traces is 1.
Thus, results of processing on the different data samples may be compared

directly.

Results for each data sample are presented in the form of
three figures, The first fijure shows mean-square-error vs ks and the
Wiener filter mean-square~-error. The second shows mean-square-error vs
time for the Wiener filter, the adaptive filter with the large ks’ and the
adaptive filter with the small ks. It should be noted that the origin in these
figures does not correspond to zero mean-square-error. The third figure
is a plot of the channel to be predicted plus the prediction and prediction

error of the Wiener and large and small ks filters.

Power spectra of the channel being predicted and of the

Wiener and adapiive error traces have been computed for UBO road noise

and LASA subarray Bl.

1. UBO Road Noise
A major highway passes within a few miles of the northwest
extent of the UBO array. The UBO road noise (Figure III-1), which is pre-
cominantly Rayleigh energy believed to originate along this highway, does not

arrive as a plane wavefront, is time varying, and isattenuated across the array.

o anlhin II1-1 | sclerce uorﬁcoc division
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with an antialiasing, slightly prewhitening filter and resampled to a sample

Prior to any multichannel filtering, the data were prefiltered

period of 72 msec.

A 27-point Wiener filter with its output point at the center of
1
the filter had been designed previously from these data to predict channel
10 using channels 1 through 9. The mean-square prediction error of the

Wiener filter, when applied to the normalized design data, was 0, 147,

Two adaptive processing runs, consisting of several passes
through the data for each run, were made on this road-noise sample, At
the beginning of the first pass of each run, the filter coefficients were set
to 0; on successive passes, the coefficients initially were equal to their
values at the end of the pPrevious pass. The first run consisted of nine passes
where ks equaled 0. 002 on the first pass and was scaled by two-thirds on each
successive pass, ending with a value of 0. 000117 after eight passes. For the
ninth pass, ks equaled 0.00005. In the second run, five passes were made,
with kB being equal to 0,0005 on the first pass; this was incremented by
0. 0005 for each additional pass. Figure III-2 plots as a function of ks the
mean-square prediction error for each of these passes, excluding the first

two in each run which were learning passes.

The fact that the adaptive filter does better than the Wiener
filter for intermediate values of ks is attributed to the nonstationarity of
UBO road noise, Figure III-3 shows mean-square-error over 50-point
intervals as a function of location in the data sample. The Wiener and small
ks adaptive plots are similar, while the plot for the strongly adapting filter
appears to be independent of the others. This result supports the hypothesis
that UBO road noise is highly nonstation>ry.
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Figure 1IT-4 shows the energy of the power spectrum of channel
10 to be concentrated around 2.5 cps. The 2.5-cps peak is reduced least by
the Wiener filter and is reduced most by the ks = 0.0015 filter, with the
ks = 0.00005 filter falling between. Additional evidence of the nonstationarity
of the data is the dissimilarity between the Wiener and the kS = 0.0015 error

spectra.

Figure III-5 shows channel 10 (the channel being predicted) as
well as the prediction and prediction err.. for the Wiener and small and large

k filters.
s
2. UBO Normal Noise

A sample of UBO data, called norrnal noise because it appears
to travel across the array as unattenuated plane waves, is shown in Figure
1II-¢. The UBO normal-noise sample was prefiltered, resampled, normalized,
and Wiener-filtered with the same procedures used for the UBO road noise.

The normalized mean-square prediction error of the Wiener filter was 0. 28.

Three adaptive processing runs were made, One with eight
passes and two with one pass with the iilter weights being initially set to 0
at the beginning of each run. For the eight passes, ks had the values of
0.0015 (learning), 0.0015, 0.001, 0.0005, O. 00025, 0.000125, 0.00005, and
0.002. Values of ks for the second and third runs were 0.0025 and 0. 003,
respectively. Figure III-7 shows the mean-square-error from all runs

(except the first learning pass).

The mean-square-erros - vs - ks curve for these data differs
from the corresponding curve for road noise. Mean-square-error increases
with increasing ks up to approximately ks = 0,001 and decreases with in-
creasing k' from k’ = 0.001 to 0.0025. Mean-square-error increases above

k, = 0. 0025 where the algorithm: becomes unstable.
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expected result for time-stationary data, since a larger ks corresponds to

Increasing mean-square-error with increasing k is the
s

a smaller time constant. Thus, the effective length of the data used in de-
signing the filter is decreased, which means statistically that the misdesign

and MSE of the filter are increased.

The dip in the MSE at kS = 0.0025 in Figure II[-7 is surprising.
One possible explanation for this phenomenon is that the data are time varying,
with a time constant which matches the adaptive time constant corresponding
to kS = 0.0025. This is probably not the correct reason for the dip since a
similar effect is seen in other MSE-vs-ks curves (Figures III-11 and III-16).
A more likely explanation is that this decrease in mean-square-error is a
false-gain effect caused by the narrow frequency bandwidth of the data, The
second interpretation is based on the factthatadata pointin anarrowband time
series can be well predicted using the recent past of the trace. At first glance,
this observation does not appear to apply because only data from channels 1
through 9 are used to predict channel 10. However, the adaptive filter, by
means of the error term in the adaptive algorithm, is influenced by the chan-
nel 10 data values. Thus, indirectly, the adaptive-filter prediction does use
the immediate past of channel 10, with the immediate past being more empha-
sized for larger values of ks. This phenomenon will be discussed further in

a later report.

The plot of mean-square-error vs time in Figure II1-8 for

ks = 0,0015 resembles the Wiener plot, indicating that the data are stationary.

Figure I1L-9 shows the channel to be predicted and the pre-
diction and prediction error for the Wiener and large ks and small ks cases
for UBO normal noise. An interesting point of comparison between Wiener

and adaptive filtering is the computational requirements of each method.

T
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On the IBM 7044, the total time to design and apply the Wiener filters to
UBO normal noise was 30 min. The procedure involved five separate runs.
One run of three adaptive passes through the data would require less than

9 min and would result in approximately the same filters.
3. LASA Subarray Bl

Another data set used the center seismometer and the first
ring of LASA subarray Bl, The data shown in Figure III-10 have been
antialias-filtered and resampled to a sample rate of 100 msec. Wiener
filters, 20-points long, were designed to predict one point ahead on channel 1
based on channels 1 through 7. The resulting normalized mean-square-error

was 0,031,

One adaptive filtering run of eighi passes was made on these data with
ks values of 0. 0015 (learning), 0. 0015, 0. 001, 0, 6005, 0.00025, 0.000175, 0, 0001,
0.00005, and 0.002. The mean-square-error - vs - ks curve (Figure III-11)
resulting from the adaptive filtering of these data has the same concave-
downward shape as seen for UBO normal noise. The plot for ks = 0,001
(Figure III-12) resembles the ks = 0,00005 curve enough that the data can be
considered time-stationary, although not to the extent of the UBO normal noise.
The question of a concave-upward or concave-downward shape for the mean-
square-error - vs - ks curve apparently involves the time-stationarity of

the data .

The power spectrum of channel 1 (Figure III-13) shows no
dominant high frequency as is the case for UBO road noise. The similarity
in the spectra of the ks = 0.001 error and the ks = 0. 00005 error is further
indication of the stationarity of this data sample.

Figure III-14 shows the Wiener and adaptive filtering results
for this LASA data set.
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Figure II-13. LASA Subarray Bl Center Seismometer and First Ring —

Power Spectra of Channel 1, Wiener Error, and Adaptive Errors

HI-19 mm division



sinding 193114 sandepy pue Ia2uaIpm
‘8ury 3sxtg pue 19jsWwowsIag 19jus) g Lerreqng ysvyr *$1-1I11 @an31q

{SIN10d V1VQ 0 YIGWNN) IWIL
0002 oost oot oo o0zt 0001 L1 s o 002 0

| 1 1 I 1 1 -Tluwmﬁl.'m I I 1

R it H
__,?1 ?_hx,h_h____gﬁ__ef}.?fi__ ,% \ &%%}é?}) gg%.%%& l_l
AR Mool A X

S.H-.“_.
|

e AR oo bttt

P Al o o A o e —

7 sclence m dlvldon

IL-20

P e




o

4, Array Data

The 13 channels of array data shown in Figure III-15 have
been prewhitened and resampled. A 37-point Wiener filter, with output
point at the centnr, was designed for these data to predict channel 1 from
channels 2 through 13. The resulting normalized mean-square-error was

0. 16.

Starting with the filter weights set to 0, one adaptive-filtering
run having six passes with ‘:B values of 0.0005 (learning), 0.0005, 0,00025,
0.000125, 0.00005, and 0. 00075 was made on these data, Figure III-16
shows intermediate values of ks rzsulting in errors smaller than the Wiener
mean-square-error. In Figure III-17, the dissimilarity between the Wiener
and the ks = 0, 0005 plots, especially in the first part of the data, indicates
that the data are nontime-stationary. (The behavior of the UBO road noise

was the same and was also nontime-stationary.)

Figure III-18 shows the predictions, the prediction error, and

the channel to be predicted for the Wiener and large ks and small ks filters.
B. MAXIMUM-LIKELIHOOD FILTERING

To compare adaptive maximum-likelihcod filtering with
conventional maximum-likelihood filtering, the same basic multichannel
data used by SDL in their conventional maximum-likelihood study2 were
used for our adaptive maximum-likelihood work. These data, which came
from LASA subarray Cl, consisted of 19 of the possible 25 subarray channels,
the six seismometers in the inner ring being omitted. A 3250-point, 100-msec
sampling-period data segment, which included the signal arrival from an
Aleutian Islands event, was the common data. The time traces were pre-
pared by first filtering them with a 0.8- to 2.8-cpr bandpass filter, which
was thought to be the same as in the SDL study, ~nd then tiine-lhifting
them to align the signal.
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To form a prediction problem, traces 2 through 19 were
subtracted from channel 1, yielding 18 difference traces that were normalized

and used to predict channel 1, which was also normalized to a variance of 1.

One-sided, 21-point adaptive maximum-likelihood filters,
similar to the SDL filters, were designed by two methods. The first,
beginning with the filter weizhts set to 0, included three passes through the
data interval from 750 to 2250 points, starting with ks = 0. 0005 for the first
pass and using decreasing values of ks (0. 00025, 0.00005} for each successive
pass., At the end of the third pass, the filters were fixed and the entire data
sample was filtered with these fixed filters. The SDL conventionally designed
maximum-likelihood filter used the same 750- to 2250-point filtering interval.
The second method began with filter weights of 0, used a k8 of 0,00005, and
let the filters operate on-line (i.e., adapt and filter) for one pass through

the duta. :

Figure III-19 shows the outputs of a phased sum, the con-
ventional maximum-~likelihood filter, and the two types of adaptive maximum-
likelihood filters. As can be seen, the adaptively designed fixed filter is
essentially equivalent in performance to that of the SDL-designed filter. The
on-line filter, which had been adapting for 1725 points at the beginning of the

shown trace, is about 3-db poorer than the off-line filters.

It was planned to have a quantitative comparison of the SDL
filter with the adaptively designed filter. However, the frequency response
of our bandpass filter was appreciably narrower than that of the SDL band-
pass filter, enough so that measured signal-to-noise ratio improvements
have little meaning. It is planned to repeat this experiment using the SDL,
bandpass filter so that our results can be compared in a more precise

manner,
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SECTION IV
CONCLUSIONS AND RECOMMENDATIONS

From the theory of adaptive filtering, adaptive prediction
filtering results would be expected to show several things. The adaptive
filter should approach the Wiener filter as ks approaches 0. This con-
vergence, which was not explicitly searched for, seems to be true experi-

mentally.

Another expected result is that the adaptive mean-square-
error may be less than the Wiener mean-square-error if the data are time-
varying but should always be greater if the data are stationary. The excess
mean-square-error for stationary data can be shown to result from random
oscillations of the filter coefficients about their optimum values, 9 Smaller
adaptive mean-square-errors for nonstationary data are produced by the
ability of the filters to track the changing minimum of the quadratic error-
squared surface. These theoretical expectations seem to be verified in
general by our experimental resuits., The exception is the interesting phe-
nomenon of the dip in mean-square-error for large values of ks (just before
the algorithm becomes unstable). This MSE decrease, which is thought to
be false gain caused by the narrow frequency bandwidth of the data, is a
subject for future study. The final expected theoretical result is that, as
ks increases, a point is reached where the algorithm becomes unstable,

A study of the parameters controlling the stability of the algorithm is being

made.
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The following summarizes our conclusions and recommendations.

® Results of this study indicate that, in the limit

as kg approaches 0, the resulting adaptive filter
approaches the Wiener filter; therefore, the
adaptive processing scheme could be of valuc
as an economicul means of Wiener filter design

As data statistics change, the optimum value
of kg changes; therefore, the investigation of

methods of varying kg with changing data statistics
is recommended

Some data samples, when filtered adaptively,
result in concave-downward mean-square-error-
vs-kg curves while other data samples result in
a concave-upward curve; preliminary results
given in this report indicate that the data char-
acteristic which determines the shape of this
curve is related to the time-stationarity of

the data

Adaptive maximum-likelihood filtering results
indicate that this type of filtering can be done
with much less time and expense than required
by conventional means

The inclusion of methods of extending the adaptive
filtering concepts to the problem of signal extraction
based on a theoretical signal model is recommended
for any future study

Only one prewhitened sample is included in the data
processed here; the other three samples will be pre-
whitened and adaptively filtered by the same pro-
cedure used on the raw data in this report in order

to determine the effects of prewhitening on adaptive
filtering, and a later report will present these results
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